TM

Cho ∆ABC có AB = AC, tia phân giác góc A cắt BC tại D. a) Chứng minh: AD vuông góc với BC. b) Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh: DA là tia phân giác của góc EDF.

NT
30 tháng 9 2021 lúc 23:27

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

Suy ra: \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

hay AD\(\perp\)BC

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC

nên AE=AF

Xét ΔAED và ΔAFD có 

AE=AF

\(\widehat{EAD}=\widehat{FAD}\)

AD chung

Do đó: ΔAED=ΔAFD

Suy ra: \(\widehat{EDA}=\widehat{FDA}\)

hay DA là tia phân giác của \(\widehat{EDF}\)

Bình luận (0)
H24
22 tháng 1 lúc 21:25

dm

Bình luận (0)

Các câu hỏi tương tự
KP
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
TK
Xem chi tiết