DA
 

Cho tgiac ABC vuông tại A. Trên cạnh BC lấy E sao cho AB = BE. Tia phân giác của B cắt cạnh AC ở D

a) chứng minh tgiac ABD = tgiac EBD

b) chứng minh: BD vuông góc với AE tại trung điểm I của đoạn AE

c) kẻ AH vuông góc với BC, (H thuộc BC) chứng minh AH // DE

d) so sánh ABC = EDC

e) gọi K là giao điểm của ED và BA, M là trung điểm KC. chứng minh B, D, M thẳng hàng

 

- Ghi GT - KL với vẽ hình đầy đủ giúp tớ với nhaa

NT
18 tháng 12 2023 lúc 22:27

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>BA=BE

=>B nằm trên đường trung trực của AE(2)

Ta có: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE tại trung điểm I của AE

c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Ta có: AH\(\perp\)BC

DE\(\perp\)BC

Do đó: AH//DE

d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)

Do đó: \(\widehat{EDC}=\widehat{ABC}\)

e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAK=ΔDEC

=>DK=DC và AK=EC

Ta có: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: DK=DC

=>D nằm trên đường trung trực của KC(4)

Ta có: MK=MC

=>M nằm trên đường trung trực của CK(5)

Từ (3),(4),(5) suy ra B,D,M thẳng hàng

loading...

Bình luận (0)