DT

Cho ∆ABC cân tại A. Kẻ BH ⊥ AC; CK ⊥ AB.
a, Chứng minh : ∆ABH = ∆ACK 
b, Chứng minh : ∆AHK cân
c, Gọi I là giao điểm của BH và CK; AI cắt BC tại M. Chứng minh: IM là phân giác của \(\widehat{BIC}\) 

NT
30 tháng 4 2023 lúc 22:53

a: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH chung

=>ΔAHB=ΔAKC

b: ΔHBA=ΔKAC
=>AH=AK

=>ΔAHK cân tại A

c: góc KBC+góc ICB=90 độ

góc HCB+góc IBC=90 độ

mà góc KBC=góc HCB

nên góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
VH
Xem chi tiết
BN
Xem chi tiết
HM
Xem chi tiết
LN
Xem chi tiết
DL
Xem chi tiết
27
Xem chi tiết
NA
Xem chi tiết