Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

NA

Cho a,b,c >0 thỏa mãn a+b+c=1

CMR \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\)≥ 64

HH
30 tháng 7 2018 lúc 22:25

Giải:

Áp dụng BĐT Cauchy cho nhiều số dương:

\(1+\dfrac{1}{a}=\dfrac{a+1}{a}=\dfrac{a+a+b+c}{a}\ge\dfrac{4\sqrt[4]{a^2.b.c}}{a}\)

\(1+\dfrac{1}{b}=\dfrac{b+1}{b}=\dfrac{a+b+b+c}{b}\ge\dfrac{4\sqrt[4]{a.b^2.c}}{a}\)

\(1+\dfrac{1}{c}=\dfrac{c+1}{c}=\dfrac{a+b+c+c}{b}\ge\dfrac{4\sqrt[4]{a.b.c^2}}{c}\)

Nhân vế theo vế, được:

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\dfrac{64\sqrt[4]{a^4.b^4.c^4}}{a.b.c}\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\dfrac{64.abc}{abc}\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
PN
Xem chi tiết
OK
Xem chi tiết
NM
Xem chi tiết
TA
Xem chi tiết
KG
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết