1) Cho phân số tối giản a/b
a) cmr a-b/ab cũng tối giản
b) ab/(a^2 + b^2) cũng tối giản
2) tìm n để : n^4 + n + 1 là số nguyên tố
Chứng minh rằng: nếu a+b là 1 số nguyên tố >2 thì a/b là phân số tối giản...
Cho a,b là hai số nguyên dương khác nhau, thỏa mãn \(2a^2+a=3b^2+b\) .
Chứng minh \(\dfrac{a-b}{2a+2b+1}\) là phân số tối giản
* Cho a, b, c ≥ 0. Chứng minh rằng a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
* Chứng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
cho hai số a,b thỏa mãn a.b lớn hơn bằng 1.chứng minh rằng:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\)lớn hơn bằng\(\dfrac{2}{1+ab}\)
cho a b c là 3 số dương thoã mãn a+b+c=1 chứng minh rằng:
\(\dfrac{c+ab}{a+b}\)+\(\dfrac{a+bc}{b+c}\)+\(\dfrac{b+ac}{a+c}\)≥2
Cho \(a-b>0\) và \(ab=1\).Chứng minh rằng:\(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Helppppppppppppppppppp
Cho a,b,c là các số thực dương thoả mãn a +b + c <1 . Chứng minh rằng \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+\left(a+b\right)}+\dfrac{1}{bc+\left(b+c\right)}+\dfrac{1}{ca+\left(c+a\right)}< \dfrac{87}{2}\)
Cho \(a>b\ge0\)
Chứng minh rằng: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)