Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

H24

Cho a, b, c dương thoả mãn

\(b^2+c^2\le a^2\)
tìm GTNN của \(A=a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{1}{a^2}\left(b^2+c^2\right)\)

NL
5 tháng 7 2020 lúc 19:51

\(b^2+c^2\le a^2\Rightarrow\frac{a^2}{b^2+c^2}\ge1\)

\(A\ge\frac{4a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}=\frac{a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}+\frac{3a^2}{b^2+c^2}\)

\(A\ge2\sqrt{\frac{a^2\left(b^2+c^2\right)}{a^2\left(b^2+c^2\right)}}+3.1=5\)

\(A_{min}=5\) khi \(b=c=\frac{a}{\sqrt{2}}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
TT
Xem chi tiết
TS
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết