Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

H24

Cho a, b, c thoả mãn

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
tìm GTNN của \(T=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

NL
11 tháng 7 2020 lúc 22:20

\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{3}{\sqrt[3]{a^2b^2c^2}}\Rightarrow a^2b^2c^2\ge27\)

\(T=1+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+a^2b^2c^2\)

\(T\ge1+3\sqrt[3]{a^2b^2c^2}+3\sqrt[3]{\left(a^2b^2c^2\right)^2}+a^2b^2c^2\)

\(T\ge1+3\sqrt[3]{27}+3\sqrt[3]{27^2}+27=...\)

Dấu "=" xảy ra khi \(a=b=c=...\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
AT
Xem chi tiết
DA
Xem chi tiết
DW
Xem chi tiết