Ôn tập: Bất phương trình bậc nhất một ẩn

NY

Cho a, b, c, d > 0. CMR:

Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

Áp dụng, chứng minh BĐT sau:

a) \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

b) \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)

c) \(2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< 3\)

PD
27 tháng 3 2018 lúc 20:37

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

Bình luận (0)
TD
27 tháng 3 2018 lúc 20:53

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

Bình luận (0)
TD
27 tháng 3 2018 lúc 21:00

b)

\(\dfrac{a}{a+b+c+d}+\dfrac{b}{b+c+d+a}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a+d}{a+b+c+d}+\dfrac{a+b}{a+b+c+d}+\dfrac{b +c}{a+b+c+d}+\dfrac{d+c}{a+b+c+d}\)

\(\Leftrightarrow\dfrac{a+b+c+d}{a+b+c+d}< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{2\left(a+b+c+d\right)}{a+b+c+d}\)\(\Leftrightarrow1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)

Bình luận (0)
TD
27 tháng 3 2018 lúc 21:12

\(\dfrac{a +b}{a+b+c+d}+\dfrac{b+c}{a+b+c+d}+\dfrac{c+d}{a+b+c+d}+\dfrac{a+d}{a+b+c+d}< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< \dfrac{a+b+d}{a+b+c+d}+\dfrac{b+c+a}{a+b+c+d}+\dfrac{c+d+b}{a+b+c+d}+\dfrac{d+a+b}{a+b+c+d}\)\(\Leftrightarrow\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}< \dfrac{a+b}{a+c+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< \dfrac{3\left(a+b+c+d\right)}{a+b+c+d}\)\(\Leftrightarrow2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< 3\)

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
DT
Xem chi tiết
TK
Xem chi tiết
TD
Xem chi tiết
VN
Xem chi tiết
PH
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
AP
Xem chi tiết