Với a,b,c là 3 cạnh tam giác hãy tìm GTNN của biểu thức: P = \(\dfrac{4a}{b+c-a}+\dfrac{9b}{a+c-b}+\dfrac{16c}{a+b-c}\)
Co tam giác có nửa chu vi p = \(\dfrac{a+b+c}{2}\) với a , b , c là độ dài 3 cạnh
Chứng minh \(\dfrac{1}{p-a}\) + \(\dfrac{1}{p-b}\) + \(\dfrac{1}{p-c}\) \(\ge\) 2(\(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) + \(\dfrac{1}{c}\) )
Cho a, b, c, d > 0. CMR:
Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
Áp dụng, chứng minh BĐT sau:
a) \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
b) \(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)
c) \(2< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{b+c+d}+\dfrac{c+d}{c+d+a}+\dfrac{d+a}{d+a+b}< 3\)
Cho a,b thuộc R*
c/m\(\dfrac{4a^2b^2}{\left(a^2+b^2\right)^2}+\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge3\)
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
cho a;b;c thoă mãn là 3 số dương và abc=1
CMR:\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
cho 3 số dương a, b, c có a+b+c=1
chứng minh: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>=9\)
Giải giùm mình mấy bài BPT này nha
a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)
b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)
e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)