Ôn tập: Bất phương trình bậc nhất một ẩn

DT

Giải giùm mình mấy bài BPT này nha

a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)

b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)

d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)

e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

ND
3 tháng 5 2018 lúc 22:26

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

Bình luận (0)
ND
3 tháng 5 2018 lúc 11:26

BPT?

Bình luận (4)

Các câu hỏi tương tự
NT
Xem chi tiết
PH
Xem chi tiết
TK
Xem chi tiết
QL
Xem chi tiết
TH
Xem chi tiết
TQ
Xem chi tiết
VA
Xem chi tiết
LH
Xem chi tiết
NY
Xem chi tiết