Bài 4: Liên hệ giữa phép chia và phép khai phương

DS

Cho a; b; c > 0. CMR

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

LH
8 tháng 9 2019 lúc 21:33

Với mọi a,b >0 có \(a^3+b^3\ge ab\left(a+b\right)\)(tự CM). Dấu "=" xảy ra <=> a=b và a,b>0

<=> \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

<=> \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

CM tương tự cx có :\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)

\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ac\left(a+b+c\right)}\)

=>A= \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ac\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}\)

<=> A\(\le\frac{1}{abc}\)

Dấu "=" xảy ra <=> a=b=c>0

Bình luận (0)
NH
8 tháng 9 2019 lúc 21:49

Liên hệ giữa phép chia và phép khai phương

Bình luận (2)

Các câu hỏi tương tự
ML
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
HD
Xem chi tiết
TD
Xem chi tiết
MH
Xem chi tiết
PD
Xem chi tiết
MK
Xem chi tiết
NA
Xem chi tiết