\(A=\sum\dfrac{x}{\sqrt{x^2+1}+x}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}+x}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\le\sum\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}=\sum\dfrac{\sqrt{x}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}=1\)
\(A=\sum\dfrac{x}{\sqrt{x^2+1}+x}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}+x}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\le\sum\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}=\sum\dfrac{\sqrt{x}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}=1\)
Cho các số thực dương x,y,z thỏa mãn xy+yz+xz=1. CMR:
\(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}=\frac{2}{\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}}\)
Các bạn giải giúp mình bài toán này nha:
Tìm giá trị nhỏ nhất của biểu thức sau:
x,, y, z là các số dương.
\(P=\sqrt[3]{4\left(x^3+y^3\right)}+\sqrt[3]{4\left(x^3+z^3\right)}+\sqrt[3]{4\left(z^3+x^3\right)}+2\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\)
Xin chân thành cảm ơn.
Nghiệm của phương trình \(x^4+2x^3+2x^2-2x+1=\left(x^3+x\right)\sqrt{\frac{1}{x}-x}\) có dạng \(a+\sqrt{b}\) với a, b thuộc Z. Tính ab.
Lâu lắm zùi mới on lại, mn giúp mk chút nhé ^^
1. Cho 2 số tự nhiên m và n tm \(\frac{m+1}{n}+\frac{n+1}{m}\in Z.\)
C/m Ư(m,n)\(\le\sqrt{m+n}\)
2. C/m ko tồn tại các số nguyên x, y, z tm x2-3xy+3y2-z2=31 và x2+xy+8z2=100.
3. Cm \(\left|\frac{m}{n}-\sqrt{2}\right|\ge\frac{1}{m^2.\left(\sqrt{3}+\sqrt{2}\right)}\)
Giúp mk vs nhé, mk cần gấp, chìu đi hk zùi. Các bn lm đc bài nào thì làm nhé
Cho A = \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{x^2+\sqrt{x}}{x-\sqrt{x+1}}\)
Rút gọn B= 1-\(\sqrt{2}\sqrt{A+2x+\frac{1}{2}}\) với 0 \(\le\)x\(\le\)1/4
Giải các phương trình sau:
a) \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x+1}\)
b) \(x^2+2x+3\sqrt{x^2+2x+2}-6=0\)
c) \(\sqrt{\left(x+1\right)\left(2-x\right)}-1+2x=2x^2\)
d) \(\sqrt{\frac{2x}{x+1}}+\sqrt{\frac{x+1}{2x}}=2\)
Cho x, y, z là số dương thỏa mãn xyz = 1. Chứng minh rằng :
\(\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^{^n}\ge3\)
cho biểu thức B=\(\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{8\sqrt{x}+8}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}\right):\left(\frac{x+\sqrt{x}+3}{2+2\sqrt{x}}+\frac{1}{\sqrt{x}}\right)\)so sánh \(B^{2019}\)với 1
Giải pt :
a) \(x^2+3x\sqrt[3]{3x+3}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
b) \(\sqrt{\left(x-1\right)\left(3-x\right)}+\sqrt{x+2}=\sqrt{x-1}+\sqrt{3-x}+\frac{x}{2}\)