Ta có: \(7x^2+8xy+7y^2=10\)
\(\Rightarrow4x^2+8xy+4y^2+3x^2+3y^2=10\)
\(\Rightarrow4\left(x+y\right)^2+3\left(x^2+y^2\right)=10\)
\(\Rightarrow3\left(x^2+y^2\right)=10-4\left(x+y\right)^2\)
\(\Rightarrow S_{Max}=x^2+y^2=\dfrac{10-4\left(x+y\right)^2}{3}\le\dfrac{10}{3}\)
Đẳng thức xảy ra khi \(x=-y\)
Ta có: \(x^2+y^2\ge2xy\forall x,y\) đẳng thức xảy ra khi \(x=y\)
Thay vào \(7x^2+8xy+7y^2=10\) ta có:
\(7x^2+8x^2+7x^2=10\)
\(\Rightarrow22x^2=10\Rightarrow x^2=\dfrac{10}{22}\Rightarrow y^2=\dfrac{10}{22}\)
Khi đó \(S_{Min}=\dfrac{10}{22}+\dfrac{10}{22}=\dfrac{10}{11}\)
Đẳng thức xảy ra khi \(x=y\)