VD

Cho |3a-2b|+|5c-7a|+(ab+bc+ca-500)^2023= 0 với a,b,c là các số thực

Tìm A = (3a-b-c)^2024

NT
1 tháng 8 2023 lúc 19:28

|3a-2b|+|5c-7a|+(ab+bc+ac-500)^2023=0

=>3a-2b=0 và 5c-7a=0 và ab+bc+ac=500

=>3a=2b và 7a=5c và ab+bc+ac=500

=>a/2=b/3 và a/5=c/7

=>a/10=b/15=c/21=k

=>a=10k; b=15k; c=21k

ab+bc+ac=500

=>150k^2+210k^2+315k^2=500

=>k^2=20/27=60/81

TH1: k=2*căn 15/9

=>\(a=\dfrac{20\sqrt{15}}{9};b=\dfrac{10\sqrt{15}}{3};c=\dfrac{14\sqrt{15}}{3}\)

=>\(A=\left(3\cdot\dfrac{20\sqrt{15}}{9}-\dfrac{10\sqrt{15}}{3}-\dfrac{14\sqrt{15}}{3}\right)^{2014}=\left(-\dfrac{4\sqrt{15}}{3}\right)^{2014}=\left(\dfrac{4}{3}\sqrt{15}\right)^{2014}\)

TH2: k=-2*căn 15/9

=>\(a=-\dfrac{20\sqrt{15}}{9};b=-\dfrac{10\sqrt{15}}{3};c=-\dfrac{14\sqrt{15}}{3}\)

\(A=\left(3\cdot\dfrac{-20\sqrt{15}}{9}+\dfrac{10\sqrt{15}}{3}+\dfrac{14\sqrt{15}}{3}\right)^{2014}=\left(\dfrac{4}{3}\sqrt{15}\right)^{2014}\)

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
PK
Xem chi tiết
PK
Xem chi tiết
BM
Xem chi tiết
DL
Xem chi tiết