Ôn tập chương 2: Hàm số bậc nhất

NP

Cho 3 số thực dương thỏa mãn điều kiện \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\) Tìm giá trị nhỏ nhất của biểu thức:

\(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{x^2z^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)

AH
9 tháng 3 2019 lúc 0:12

Lời giải:

\(\frac{1}{x^2}=1-\frac{1}{y^2}-\frac{1}{z^2}<1\Rightarrow x^2-1>0\)

\(P=\frac{y^2z^2}{x(y^2+z^2)}+\frac{x^2z^2}{y(x^2+z^2)}+\frac{x^2y^2}{z(x^2+y^2)}\)

\(=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{x^2}+\frac{1}{z^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)

\(=\frac{1}{x(1-\frac{1}{x^2})}+\frac{1}{y(1-\frac{1}{y^2})}+\frac{1}{z(1-\frac{1}{z^2})}\)

\(=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\)

Xét đánh giá sau:

\(\frac{x}{x^2-1}-\frac{3\sqrt{3}}{2x^2}=\frac{(x-\sqrt{3})^2(2x+\sqrt{3})}{2x^2(x^2-1)}\geq 0, \forall x^2>1\)

\(\Rightarrow \frac{x}{x^2-1}\geq \frac{3\sqrt{3}}{2x^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow P=\frac{x}{x^2-1}+\frac{y}{y^2-1}+\frac{z}{z^2-1}\geq \frac{3\sqrt{3}}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3\sqrt{3}}{2}\)

Vậy \(P_{\min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\sqrt{3}\)

Bình luận (0)
H24
9 tháng 3 2019 lúc 11:16

SOS get it <(")

\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)->\left(a;;bc\right)\text{for}\left(a;b;c>0\text{and}a^2+b^2+c^2=1\right)\)

\(\text{Khido}P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

\(\text{Ta se cm}\sum_{cyc}\frac{a}{b^2+c^2}\ge\frac{3\sqrt{3}}{2}\)\(\text{Viet lai BDT can chung minh}\)

\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2\sqrt{x^2+y^2+z^2}}\)

\(\text{Chuan hoa}a^2+b^2+c^2=3\text{ta can cm:}\)

\(\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{3-a^2}-\frac{1}{2}+\frac{b}{3-b^2}-\frac{1}{2}+\frac{c}{3-c^2}-\frac{1}{2}\ge0\)

\(\Leftrightarrow\sum_{cyc}\left(\frac{a}{3-a^2}-\frac{1}{2}-\frac{1}{2}\left(x^2-1\right)\right)\ge0\)

\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}+\frac{b\left(b+2\right)\left(b-1\right)^2}{3-b^2}+\frac{c\left(c+2\right)\left(c-1\right)^2}{3-c^2}\ge0\)

Bình luận (1)

Các câu hỏi tương tự
AD
Xem chi tiết
TN
Xem chi tiết
WT
Xem chi tiết
VN
Xem chi tiết
VN
Xem chi tiết
TV
Xem chi tiết
NM
Xem chi tiết
VV
Xem chi tiết
NT
Xem chi tiết