Ôn tập hệ hai phương trình bậc nhất hai ẩn

NP

Cho 3 số dương thỏa mãn điều kiện \(\dfrac{1}{a+b+1}+\dfrac{1}{a+c+1}+\dfrac{1}{b+c+1}=2\)

Tìm GTLN của (a+b)(b+c)(c+a)

BD
29 tháng 5 2017 lúc 7:23

Ta có:\(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{a+c+1}=2\)

\(\Rightarrow\dfrac{1}{a+b+1}=\left(1-\dfrac{1}{b+c+1}\right)+\left(1-\dfrac{1}{a+c+1}\right)\)

\(\Rightarrow\dfrac{1}{a+b+1}=\dfrac{b+c}{b+c+1}+\dfrac{a+c}{a+c+1}\ge2\sqrt{\dfrac{\left(b+c\right)\left(a+c\right)}{\left(b+c+1\right)\left(a+c+1\right)}}\)Chứng minh tương tự :\(\dfrac{1}{b+c+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{\left(a+b+1\right)\left(a+c+1\right)}}\)

\(\dfrac{1}{a+c+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)

Nhân các bất đẳng thức trên lại với nhau về theo vế ,ta được:

\(\dfrac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\ge\dfrac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(a+c+1\right)}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi:\(a=b=c=\dfrac{1}{4}\)

Vậy giá trị lớn nhất của (a+b)(b+c)(c+a) là \(\dfrac{1}{8}\) khi \(a=b=c=\dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
DD
Xem chi tiết
VT
Xem chi tiết
AN
Xem chi tiết
CT
Xem chi tiết
DD
Xem chi tiết
NT
Xem chi tiết