31

Cho 2 điểm P(1;6) và Q(-3;-4) và đường thẳng △: 2x - y - 1 = 0. Tọa độ điểm M thuộc △ sao cho MP + MQ nhỏ nhất.

A. M(0;-1)

B. M(2;3)

C. M(1;1)

D. M(3;5)

NL
6 tháng 3 2022 lúc 22:47

Thay tọa độ P, Q vào phương trình \(\Delta\) ta được 2 giá trị cùng dấu \(\Rightarrow\) P, Q nằm cùng phía so với \(\Delta\)

Gọi A là điểm đối xứng với \(P\) qua \(\Delta\Rightarrow AM=PM\)

\(\Rightarrow MP+MQ=AM+MQ\ge AQ\)

Dấu "=" xảy ra khi và chỉ khi A, M, Q thẳng hàng hay M là giao điểm AQ và \(\Delta\)

Phương trình đường thẳng d qua P và vuông góc \(\Delta\) có dạng:

\(1\left(x-1\right)+2\left(y-6\right)=0\Leftrightarrow x+2y-13=0\)

Tọa độ giao điểm H giữa d và \(\Delta\) là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-13=0\end{matrix}\right.\) \(\Rightarrow H\left(3;5\right)\)

A đối xứng P qua \(\Delta\) khi và chỉ khi H là trung điểm AP \(\Rightarrow A\left(5;4\right)\)

\(\Rightarrow\overrightarrow{QA}=\left(8;8\right)=8\left(1;1\right)\Rightarrow\) đường thẳng AQ nhận (1;-1) là 1 vtpt

Phương trình AQ:

\(1\left(x+3\right)-1\left(y+4\right)=0\Leftrightarrow x-y-1=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}x-y-1=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow M\left(0;-1\right)\)

Bình luận (0)

Các câu hỏi tương tự
31
Xem chi tiết
PQ
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
CV
Xem chi tiết
NN
Xem chi tiết
CL
Xem chi tiết
PB
Xem chi tiết
TS
Xem chi tiết