H24

cho đường thẳng Δ : x + y - 2 = 0 và điểm A( 2; 2). Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho khoảng cách từ A đến M nhỏ nhất. 

NL
30 tháng 4 2021 lúc 12:36

Khoảng cách AM là nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của A lên \(\Delta\)

Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

M là giao điểm của d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+y-2=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

Bình luận (0)

Các câu hỏi tương tự
PQ
Xem chi tiết
PB
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
TQ
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
LN
Xem chi tiết
PB
Xem chi tiết