Cho tứ diện ABCD. Gọi G 1 và G 2 lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G 1 G 2 song song với các mặt phẳng (ABC) và (ABD).
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là G 1 , G 2 .
Tìm câu đúng nhất.
Thiết diện của hình tứ diện cắt bởi mặt phẳng ( B G 1 G 2 ) là:
A. Tam giác
B. Tứ giác
C. Tam giác cân
D. Hình thang
Cho tứ diện ABCD. Gọi G 1 , G 2 , G 3 lần lượt là trọng tâm các tam giác ABC, ACD, ABD. Chứng minh rằng ( G 1 G 2 G 3 ) / / ( B C D ) .
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là G 1 , G 2 . Diện tích thiết diện đó bằng:
A. a 2 3 6
B. 2 a 2 3 3
C. a 2 2 4
D. a 2 2 6
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là G 1 , G 2 . Chu vi thiết diện đó bằng:
A. a 3 + 1
B. a 2 3 + 1 2
C. 2 a 3 + 1
D. 2 a 3 + 3 2
Cho tứ diện ABCD có thể tích V . Gọi M, N, P, Q lần lượt là trọng tâm tam giác ABC, ACD, ABD và BCD . Thể tích khối tứ diện MNPQ bằng
A. 4 V 9
B. V 27
C. V 9
D. 4 V 27
Cho tứ diện ABCD. Gọi G 1 ; G 2 ; G 3 là trọng tâm các tam giác ABC, ACD, ABD. Phát biểu nào sau đây đúng?
A. G 1 G 2 G 3 c ắ t ( B C D )
B. G 1 G 2 G 3 ∥ ( B C D )
C. G 1 G 2 G 3 ∥ ( B C A )
D. G 1 ; G 2 ; G 3 không có điểm chung với (ACD)
Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi G 1 và G 2 lần lượt là trọng tâm của các tam giác SBC và SCD
Tìm giao tuyến của mặt phẳng ( A G 1 G 2 ) với các mặt phẳng (ABCD) và (SCD).
Xác định thiết diện của hình chóp với mặt phẳng ( A G 1 G 2 ) .
Cho tứ diện ABCD có E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mp (ACD) là
A. điểm F
B. giao điểm của EG và AF
C. Giao điểm của EG và AC
D. giao điểm của EG và CD
CHO tứ diện ABCD gọi M,N lần lượt là trung điểm của AC,BC.P là trọng tâm của tam giác BCD,xác định giao tuyến của (ABP) với(ACD)