`a)` Xét hbh `ABCD` có: `E,F` là tđ của `BC;AD`
`=>EF` là đường trung bình của hbh `ABCD`
`=>EF=AB=DC` `(1)`
`@E;F` là trung điểm của `BC;AD=>{(BE=1/2BC=>BC=2BE),(AF=1/AD=>AD=2AF):}`
Mà `AD=2AB=BC`
`=>AF=AB=BE` `(2)`
Từ `(1);(2)=>AF=BE=AB=EF=>` T/g `ABEF` là hình thoi
`b)` C/m: `BEDF` là hbh chứ nhỉ?
Có: `AF=DF`
Mà `AF=BE`
`=>DF=BE` mà `DF //// BE`
`=>` T/g `BEDF` là hbh
`c)` Xét `\triangle AFB` có: `AF=AB` và `\hat{A}=60^o`
`=>\triangle AFB` đều `=>{(AF=BF),(\hat{AFB}=60^o ):}`
Mà `AF=DF`
`=>DF=BF`
`=>\triangle DFB` cân
`=>\hat{BFD}+2\hat{FDB}=180^o`
`=>180^o -\hat{AFB}+2\hat{ADB}=180^o`
`=>180^o -60^o +2\hat{ADB}=180^o =>\hat{ADB}=30^o`