HP

Cho hình bình hành ABCD có BC= 2AD và góc a = 60 độ gọi E, F lần lượt là trung điểm của BC,AD trên tia AB lấy điểm I sao cho B là trung điểm của AIa) Chứng minh tứ giác ABEF là hình thoi b) Chứng minh FI vuông góc BC) c) Chứng minh 3 điểm D,E,I thẳng hàng ( vẽ cả hình) 

NT
20 tháng 10 2023 lúc 21:04

Sửa đề: BC=2AB

a: \(BE=EC=\dfrac{BC}{2}\)

\(AF=FD=\dfrac{AD}{2}\)

mà BC=AD

nên BE=EC=AF=FD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

mà BE=BA(=1/2BC)

nên ABEF là hình thoi

b: Xét ΔIFA có

FB là đường trung tuyến

\(FB=\dfrac{IA}{2}\)

Do đó: ΔIFA vuông tại F

=>IF\(\perp\) AD
mà AD//BC

nên \(IF\perp BC\)

c: Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

=>BC cắt ID tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của ID

=>I,E,D thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NB
Xem chi tiết
NB
Xem chi tiết
VM
Xem chi tiết
LV
Xem chi tiết
DQ
Xem chi tiết
HN
Xem chi tiết
DL
Xem chi tiết
TM
Xem chi tiết