LP

Câu 1: Cho tam giác DEF vuông tại D có DE = 12cm, DF = 9cm, DM là đường trung tuyến (M thuộc EF). a) Tính EF, DM. b) Gọi N và K lần lượt là chân các đường vuông góc hạ từ M xuống DE và DF. Tứ giác DNMK là hình gì? Vì sao? c) Gọi H là điểm đối xứng với M qua N, O là trung điểm của MD. Chứng minh rằng ba điểm H, O, F thẳng hàng rồi.

NT
11 tháng 12 2023 lúc 20:19

a: ΔDEF vuông tại D

=>\(DE^2+DF^2+EF^2\)

=>\(EF^2=9^2+12^2=225\)

=>\(EF=\sqrt{225}=15\left(cm\right)\)

Ta có; ΔDEF vuông tại D

mà DM là đường trung tuyến

nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)

b: Xét tứ giác DNMK có

\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)

=>DNMK là hình chữ nhật

c: Xét ΔDEF có MN//DF

nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)

=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)

mà \(MN=\dfrac{1}{2}MH\)

nên MH=DF

Ta có: MN//DF

N\(\in\)MH

Do đó: MH//DF

Xét tứ giác DHMF có

MH//DF

MH=DF

Do đó: DHMF là hình bình hành

=>DM cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của DM

nên O là trung điểm của HF

=>H,O,F thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QT
Xem chi tiết
NK
Xem chi tiết
TN
Xem chi tiết
TA
Xem chi tiết
NN
Xem chi tiết
LM
Xem chi tiết
TD
Xem chi tiết
NA
Xem chi tiết