Ôn tập Tam giác

DG

Câu 1: Cho tam giác cân ABC c©n t¹i A (AB = AC). Gọi D, E lần lượt là trung điểm của AB và AC. a) Chứng minh  =  ABE ACD. b) Chứng minh BE = CD. c) Gọi K là giao điểm của BE và CD. Chứng minh KBC c©n t¹i K. d) Chøng minh AK là tia phân giác của BAC

NT
22 tháng 2 2022 lúc 21:10

a: Xét ΔABE và ΔACD có 

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

b: Ta có: ΔABE=ΔACD

nên BE=CD

c: Xét ΔDBC và ΔECB có 

DB=EC

BC chung

DC=EB

Do đó:ΔDBC=ΔECB

Suy ra: \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

d: Xét ΔABK và ΔACK có

AB=AC

AK chung

BK=CK

Do đó: ΔABK=ΔACK

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)

hay AK là tia phân giác của góc BAC

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
HL
Xem chi tiết
DH
Xem chi tiết
BU
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết