a)
$3-\sqrt{3}+\sqrt{15}-3\sqrt{15}$
$=\sqrt{3}(\sqrt{3}-1)-\sqrt{15}(3-1)$
$=(\sqrt{3}(\sqrt{3}-1)-\sqrt{15}(\sqrt{3}+1)(\sqrt{3}-1)$
$=(\sqrt{3}-1)[\sqrt{3}-\sqrt{15}(\sqrt{3}+1)]$
$=(\sqrt{3}-1)(\sqrt{3}-\sqrt{45}-\sqrt{15})$
b)
$\sqrt{1-a}+\sqrt{1-a^2}=\sqrt{1-a}+\sqrt{(1-a)(1+a)}$
$=\sqrt{1-a}+\sqrt{1-a}.\sqrt{1+a}=\sqrt{1-a}(1+\sqrt{1+a})$
c)
$\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}$
$=(\sqrt{a^3}+\sqrt{a^2b})-(\sqrt{b^3}+\sqrt{ab^2})$
$=\sqrt{a^2}(\sqrt{a}+\sqrt{b})-\sqrt{b^2}(\sqrt{b}+\sqrt{a})$
$=a(\sqrt{a}+\sqrt{b})-b(\sqrt{b}+\sqrt{a})$
$=(\sqrt{a}+\sqrt{b})(a-b)=(\sqrt{a}+\sqrt{b})^2(\sqrt{a}-\sqrt{b})$
d)
$x-y+\sqrt{xy^2}-\sqrt{y^3}$
$=(x-y)+(\sqrt{xy^2}-\sqrt{y^3})$
$=(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})+y(\sqrt{x}-\sqrt{y})$
$=(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y}+y)$