Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

H24

B=\(\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)

a) Rút gọn 

b) Tìm B khi a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)

c) Tìm a để \(\sqrt{B}>B\)

a) ĐKXĐ: \(a>1;a\ne-1\) 

\(B=\left(\dfrac{3}{\sqrt{1+a}}+\dfrac{\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right):\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)

\(\Leftrightarrow B=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}.\dfrac{\sqrt{1+a}.\sqrt{1-a}}{3+\sqrt{1+a}.\sqrt{1-a}}\)

\(\Leftrightarrow B=\sqrt{1-a}\)

b) Thay a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\) vào B ta được:

\(B=\sqrt{1-\dfrac{\sqrt{3}}{2+\sqrt{3}}}\) 

\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2+\sqrt{3}-\sqrt{3}}{2+\sqrt{3}}}\)

\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2}{2+\sqrt{3}}}\) 

\(\Leftrightarrow B\)\(=\sqrt{\dfrac{4}{4+2\sqrt{3}}}\) \(\Leftrightarrow B\) \(=\dfrac{\sqrt{4}}{\sqrt{3+2\sqrt{3}+1}}\) 

\(\Leftrightarrow B=\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\) \(\Leftrightarrow B=\dfrac{2}{\sqrt{3}+1}=\dfrac{2.\left(\sqrt{3}-1\right)}{3-1}=\sqrt{3}-1\) 

c) Có \(\sqrt{B}>B\) \(\Leftrightarrow\sqrt{\sqrt{1-a}}>\sqrt{1-a}\) 

\(\Leftrightarrow\sqrt{1-a}>1-a\) 

\(\Leftrightarrow\sqrt{1-a}-\left(1-a\right)>0\) 

\(\Leftrightarrow\sqrt{1-a}.\left(1-\sqrt{1-a}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{1-a}>0\\1-\sqrt{1-a}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{1-a}< 0\\1-\sqrt{1-a}< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 1\\a>0\end{matrix}\right.\\\left\{{}\begin{matrix}a>1\\a< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< a< 1\\a>1;a< 0\end{matrix}\right.\)

 

 

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết