Ẩn danh

biết a+b+c=0, hãy rút gọn:

\(\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-a^2-c^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

H24
4 tháng 8 2024 lúc 20:26

Với \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\). Khi đó:

+,

\(\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-a^2-c^2}+\dfrac{c^2}{c^2-a^2-b^2}\\ =\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(a^2+c^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\\ =\dfrac{a^2}{a^2-\left(b+c\right)^2+2bc}+\dfrac{b^2}{b^2-\left(a+c\right)^2+2ac}+\dfrac{c^2}{c^2-\left(a+b\right)^2+2ab}\\ =\dfrac{a^2}{a^2-\left(-a\right)^2+2bc}+\dfrac{b^2}{b^2-\left(-b\right)^2+2ac}+\dfrac{c^2}{c^2-\left(-c\right)^2+2ab}\\ =\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\\ =\dfrac{\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{2abc}\\ =\dfrac{0-3.\left(-c\right).\left(-a\right).\left(-b\right)}{2abc}=\dfrac{3}{2}\)

+,

\(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\\ =\dfrac{1}{\left(b+c\right)^2-a^2-2bc}+\dfrac{1}{\left(c+a\right)^2-b^2-2ac}+\dfrac{1}{\left(a+b\right)^2-c^2-2ab}\\ =\dfrac{1}{\left(-a\right)^2-a^2-2bc}+\dfrac{1}{\left(-b\right)^2-b^2-2ac}+\dfrac{1}{\left(-c\right)^2-c^2-2ab}\\ =\dfrac{1}{-2bc}+\dfrac{1}{-2ac}+\dfrac{1}{-2ab}\\ =-\dfrac{a+b+c}{2abc}=0\)

#$\mathtt{Toru}$

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
TN
Xem chi tiết
3Y
Xem chi tiết
NM
Xem chi tiết
TN
Xem chi tiết
Xem chi tiết
Xem chi tiết
NC
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết