§1. Hàm số

NT

Bài 9: Cho hàm số \(y=\dfrac{2mx+4}{\sqrt{x^2+2mx+2018m+2019}}+\sqrt{mx^2+2mx+2020}\). Gọi S là tập hợp các giá trị nguyên của m để hàm số xác định trên R. Hỏi tập S có bao nhiêu phần tử?

H24
9 tháng 10 2021 lúc 13:23

Hàm số xác định khi \(\left\{{}\begin{matrix}x^2+2mx+2018m+2019>0\\mx^2+2mx+2020\ge0\end{matrix}\right.\)

Xét \(f\left(x\right)=x^2+2mx+2018m+2019\)

Có: \(\Delta'=m^2-2018m-2019\)

Để \(f\left(x\right)>0\) thì \(\Delta'< 0\Leftrightarrow m^2-2018m-2019< 0\Leftrightarrow-1< m< 2019\)(*)

Xét \(g\left(x\right)=mx^2+2mx+2020\)

Dễ thấy \(m=0\) thì \(g\left(x\right)=\sqrt{2020}>0\)(1)

Để \(g\left(x\right)\ge0\) thì \(\left\{{}\begin{matrix}m>0\\\Delta'\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-2020m\le0\end{matrix}\right.\)\(\Leftrightarrow0< m\le2020\) (2)

 (1),(2)\(\Rightarrow g\left(x\right)\ge0\Leftrightarrow0\le m\le2020\) (**)

(*),(**) suy ra hàm số xác định khi \(0\le m< 2019\)

Do đó tập hợp các giá trị nguyên của m để hàm số xác định là:

\(S=\left\{m\in Z|0\le m< 2019\right\}\) và tập hợp có 2019 phần tử

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
HN
Xem chi tiết
LD
Xem chi tiết
NT
Xem chi tiết
LN
Xem chi tiết
LT
Xem chi tiết
MS
Xem chi tiết
HN
Xem chi tiết