\(a;b.B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\sqrt{x}-1\) ( x > 0 ; x # 1 )
\(c.x=3+\sqrt{8}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\left(TM\right)\)
⇒ \(\sqrt{x}=\sqrt{2}+1\)
Khi đó : \(B=\sqrt{2}+1-1=\sqrt{2}\)
\(d.B=\dfrac{2}{3}\) ⇔ \(\sqrt{x}=\dfrac{2}{3}+1\text{⇔}x=\dfrac{25}{9}\left(TM\right)\)
\(e.B>1\text{⇔}\sqrt{x}-1>1\text{⇔}\sqrt{x}>2\text{⇔}x>4\)