a. (2x - 1)2 - 25 = 0
<=> (2x - 1 - 25)(2x - 1 + 25) = 0
<=> (2x - 26)(2x + 24) = 0
<=> \(\left[{}\begin{matrix}2x-26=0\\2x+24=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=13\\x=-12\end{matrix}\right.\)ư
b. 8x3 - 50x = 0
<=> 2x(4x2 - 25) = 0
<=> 2x(2x - 5)(2x + 5) = 0
<=> \(\left[{}\begin{matrix}2x=0\\2x-5=0\\2x+5=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\)
c. 2(x + 3) - x2 - 3x = 0
<=> 2(x + 3) - x(x + 3) = 0
<=> (2 - x)(x + 3) = 0
<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
d. x3 + 27 + (x + 3)(x - 9) = 0
<=> (x + 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0
<=> (x + 3)(x2 - 3x + 9 + x - 9) = 0
<=> (x + 3)(x2 - 2x) = 0
<=> x(x + 3)(x - 2) = 0
<=> \(\left[{}\begin{matrix}x=0\\x+3=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
Tiếp câu a:
\(\left(2x-26\right)\left(2x+24\right)=0\)
<=> \(\left[{}\begin{matrix}2x-26=0\\2x+24=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=13\\x=-12\end{matrix}\right.\)