Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

DA

Cho x, y, z là các số thực thỏa mãn điều kiện \(x^2+y^2+z^2=9,xyz\le0\)

Chứng minh rằng : \(2\left(x+y+z\right)-xyz\le10\)

DQ
6 tháng 4 2016 lúc 21:31

Giả sử \(x\le y\le z\) do \(xyz\le0\) nên\(x\le0\)

Do \(x^2+y^2+z^2=9\Rightarrow x^2\le9\Rightarrow x\in\left[-3;0\right]\)

Ta có \(yz\le\left(\frac{y+z}{2}\right)^2\le\frac{y^2+z^2}{2}\)

Do đó : \(2\left(x+y+z\right)-xyz=2x+2\left(y+z\right)-xyz\le2x+2\sqrt{2\left(y^2+z^2\right)}-x.\frac{y^2+z^2}{2}\)

           \(=2x+2\sqrt{2\left(9-x^2\right)}-\frac{x\left(9-x^2\right)}{2}=\frac{x^3}{2}-\frac{5x}{2}+2\sqrt{2\left(9-x^2\right)}\)

Xét hàm số :

\(f\left(x\right)=\frac{x^3}{2}-\frac{5x}{2}=2\sqrt{2\left(9-x^2\right)}\) với \(x\in\left[-3;0\right]\) \(\Rightarrow f'\left(x\right)=\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}\)

Xét \(f'\left(x\right)=0\Leftrightarrow\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}=0\Leftrightarrow\sqrt{9-x^2}\left(5-3x^2\right)=-4\sqrt{2}x\)

     \(\Leftrightarrow\left(9-x^2\right)\left(5-3x^2\right)=32x^2\) (với điều kiện \(5-3x^2\ge0\))

     \(\Leftrightarrow9x^9-111x^4+327x^2-225=0\)

     \(\Leftrightarrow x^2=1;x^2=3;x^2=\frac{25}{3}\)

\(x^2\le\frac{5}{3}\) nên \(x^2=1\Leftrightarrow x=1,x=-1\) (loại)

Ta có \(f\left(-3\right)=-6;f\left(1\right)=10;f\left(0\right)=6\sqrt{2}\) suy ra Max \(f\left(x\right)=f\left(-1\right)=10\)

\(2\left(x+y+z\right)-xyz\le f\left(x\right)\le10\)

Dấu = xảy ra khi x=-1, y=z và \(x^2+y^2+z^2=9\)

\(\Leftrightarrow x=-1;y=z=2\)

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
TH
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
PV
Xem chi tiết
CL
Xem chi tiết
LH
Xem chi tiết