Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

DD

cho các số thực a,b,c>=0 thỏa mãn a+b+c=1.Chứng minh rằng:1/(1-a)+1/(1-b)+1/(1-c)>=2/(1+a)+2/(1+b)+2/(1+c)

 

IM
10 tháng 9 2016 lúc 20:09

Đề là 

Cho \(a;b;c\ge0\) thỏa mãn a+b+c = 1

Cmr : \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\ge\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}\) ak bạn 

Bình luận (0)
H24
18 tháng 9 2016 lúc 22:41

Ta có:a+b+c=1

\(đpcm\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{2}{a+2b+c}+\frac{2}{2a+b+c}+\frac{2}{a+b+2c}\)(*)

Áp dụng BĐT Bunhiacopxki:

\(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)(1)

Tương tự:\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{a+b+2c}\)(2)

\(\frac{1}{a+b}+\frac{1}{c+a}\ge\frac{4}{2a+b+c}\)(3)

Cộng theo từng vế của (1);(2);(3) ta đc:(*)(đpcm)

Dấu ''='' xảy ra\(\Leftrightarrow a=b=c=\frac{1}{3}\)

 

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
TS
Xem chi tiết
TT
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
KR
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết