NP

Bài 2: Cho ΔABC ⊥ tại A, đường cao AH, đường phân giác AD, kẻ DA⊥AC (K∈AC)

a) Cm ΔABC đồng dạng ΔHAC

b) Cho AB= 6cm, AC= 8cm. Tính BD

c) Cm AC.AD=√2AB.CK

Giúp mk vs ;-;

NT
29 tháng 4 2021 lúc 20:23

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

Bình luận (0)
NT
29 tháng 4 2021 lúc 20:25

b) Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=BC=10cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(\dfrac{BD}{6}=\dfrac{5}{7}\)

hay \(BD=\dfrac{30}{7}cm\)

Vậy: \(BD=\dfrac{30}{7}cm\)

Bình luận (1)

Các câu hỏi tương tự
TH
Xem chi tiết
MD
Xem chi tiết
TH
Xem chi tiết
TA
Xem chi tiết
NC
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
TP
Xem chi tiết