§1. Bất đẳng thức

H24

\(a,b,c>0.CMR:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)

NL
1 tháng 12 2018 lúc 21:28

\(VT=\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2a\sqrt{bc}}+\dfrac{1}{2b\sqrt{ac}}+\dfrac{1}{2c\sqrt{ab}}\)

\(VT\le\dfrac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2abc}\)

Mặt khác ta luôn có:

\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)

\(\Rightarrow2\left(a+b+c\right)-2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)\ge0\)

\(\Rightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le a+b+c\)

\(\Rightarrow VT\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết
LB
Xem chi tiết
DY
Xem chi tiết
PO
Xem chi tiết