Bài 2: Hình thang

GL

Bài 19. Cho hình thoi ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia
CB lấy điểm F, trên ta đối của tia DC lấy điểm G, trên tia đối của tia AD lấy
điểm H sao cho BE = CF = DG = AH.
1. Chứng minh tứ giác EF GH là hình bình hành.
2. Chứng minh hình bình hành EF GH và hình thoi ABCD có chung tâm đối
xứng.
3. Nếu ABCD là hình vuông thì EF GH là hình gì? Tại sao?

NT
7 tháng 10 2023 lúc 18:25

1: DH=DA+AH

CG=CD+DG

BF=BC+CF

AE=AB+BE

mà DA=CD=BC=AB và AH=DG=CF=BE

nên DH=CG=BF=AE

góc ADG=180 độ-góc ADC

góc EBF=180 độ-góc ABC

mà góc ADC=góc ABC

nên góc ADG=góc EBF

góc EAB=180 độ-góc BAD

góc GCF=180 độ-góc BCD

mà góc BAD=góc BCD

nên góc EAB=góc GCF

Xét ΔHDG và ΔFBE có

HD=FB

góc HDG=góc FBE

DG=BE

Do đó: ΔHDG=ΔFBE

=>HG=FE

Xét ΔHAE và ΔFCG có

HA=FC

góc HAE=góc FCG

AE=CG

Do đó: ΔHAE=ΔFCG

=>HE=FG

Xét ΔADG và ΔCBE có

AD=CB

góc ADG=góc CBE

DG=BE

Do đó: ΔADG=ΔCBE

=>AG=CE

Xét tứ giác EHGF có

EH=FG

EF=GH

Do đó: EHGF là hình bình hành

2:

Gọi O là giao của AC và BD

ABCD là hình thoi

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AGCE có

AG=CE

AE=CG

Do đó: AGCE là hình bình hành

=>AC cắt GE tại trung điểm của mỗi đường

=>O là trung điểm của GE

GHEF là hình bình hành

=>GE cắt HF tại trung điểm của mỗi đường

=>O là trung điểm của HF

=>ĐPCM

3:

ABCD là hình vuông

=>góc BAD=góc ADC=90 độ

Xét ΔHAE vuông tại A và ΔGDH vuông tại D có

HA=GD

AE=DH

Do đó: ΔHAE=ΔGDH

=>HE=GH

Xét hình bình hành EHGF có HE=GH

nên EHGF là hình thoi

Bình luận (0)

Các câu hỏi tương tự
GL
Xem chi tiết
LH
Xem chi tiết
2N
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
RN
Xem chi tiết
LH
Xem chi tiết
31
Xem chi tiết
NC
Xem chi tiết