Ôn tập Tam giác

H24

Bài 15. Cho tam giác nhọn ABC có AB < AC, AD là tia phân giác của góc BAC. AE = AB, ED cắt AB tại F. Chứng minh:

a, Tam giác ADB = tam giác ADE

b, AF = AC

c, Tam giác DBF = tam giác DEC

NT
8 tháng 12 2023 lúc 20:48

a: Xét ΔADB và ΔADE có

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

AB=AE

Do đó: ΔADB=ΔADE

b: Ta có: ΔADB=ΔADE

=>\(\widehat{ABD}=\widehat{AED}\)

=>\(\widehat{ABC}=\widehat{AEF}\)

Xét ΔEAF và ΔBAC có

\(\widehat{AEF}=\widehat{ABC}\)

AE=AB

\(\widehat{EAF}\) chung

Do đó: ΔEAF=ΔBAC

=>AF=AC

c: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: ΔABD=ΔAED

=>DB=DE

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

Bình luận (0)

Các câu hỏi tương tự
0A
Xem chi tiết
QM
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết