§1. Bất đẳng thức

VV

bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm âm

a) x2+(2m-1)x+m+1=0

b)-x2+(m-2)x+2m-1=0

c) x2+mx+m-3/4=0

d)4x2+4(2m-1)x+m=0

e)x2-(m+1)x+m-1=0

f)(m-2)x2-2(m-2)x+1=0

NL
8 tháng 5 2020 lúc 18:40

Để pt có 2 nghiệm âm (không cần phân biệt) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}< 0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

a/

\(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2-4\left(m+1\right)\ge0\\x_1+x_2=-2m+1< 0\\x_1x_2=m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-8m-3\ge0\\m>\frac{1}{2}\\m>-1\end{matrix}\right.\) \(\Rightarrow m\ge\frac{2+\sqrt{7}}{2}\)

b/

\(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2+4\left(2m-1\right)\ge0\\x_1+x_2=m-2< 0\\x_1x_2=1-2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m\ge0\\m< 2\\n< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-4\\0\le m< \frac{1}{2}\end{matrix}\right.\)

Bình luận (0)
NL
8 tháng 5 2020 lúc 18:44

c/

\(\left\{{}\begin{matrix}\Delta=m^2-4\left(m-\frac{3}{4}\right)\ge0\\x_1+x_2=-m< 0\\x_1x_2=m-\frac{3}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+3\ge0\\m>0\\m>\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\frac{3}{4}< m\le1\end{matrix}\right.\)

d/

\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\x_1+x_2=1-2m< 0\\x_1x_2=\frac{m}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>\frac{1}{2}\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge1\)

Bình luận (0)
NL
8 tháng 5 2020 lúc 18:47

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\x_1+x_2=m+1< 0\\x_1x_2=m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5>0\\m< -1\\m>1\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

f/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\x_1+x_2=2< 0\left(vô-lý\right)\\x_1x_2=\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

Bình luận (0)

Các câu hỏi tương tự
VV
Xem chi tiết
VV
Xem chi tiết
VV
Xem chi tiết
VV
Xem chi tiết
VV
Xem chi tiết
TK
Xem chi tiết
TD
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết