TT

Bài 11. Cho tam giác ABC cân tại A có AM và BN là hai đường trung tuyến cắt nhau tại G.

a) Chứng minh: tam giác AMB = tam giác AMC.

b) Cho biết BN = 15cm . Tính độ dài đoạn thẳng BG

c) Trên tia đối tia MG lấy E sao cho ME = MG . Chứng minh: AG = FG

NK
1 tháng 5 2023 lúc 10:04

`@` `\text {dnv}`

`a,`

Xét `\Delta AMB` và `\Delta AMC`:

`\text {AB = AC} (\Delta ABC \text {cân tại A})`

`\hat {B} = \hat {C} (\Delta ABC \text {cân tại A})`

`\text {MB = MC (vì AM là đường trung tuyến)`

`=> \Delta AMB = \Delta AMC (c-g-c)`

`b,`

\(\text{Vì AM}\text{ }\cap\text{BN tại G}\)

\(\text{AM, BN đều là đường trung tuyến}\)

`->`\(\text{G là trọng tâm của }\Delta\text{ABC}\)

`@` Theo tính chất của trọng tâm trong tam giác

`->`\(\text{BG = }\dfrac{2}{3}\text{BN}\)

Mà `\text {BN = 15 cm}`

`->`\(\text{BG = }\dfrac{2}{3}\cdot15=\dfrac{15}{3}=5\text{ }\left(\text{cm}\right)\)

Vậy, độ dài của \(\text{BG là 5 cm}\).

`c,` Bạn xem lại đề!

loading...

Bình luận (0)

Các câu hỏi tương tự
LU
Xem chi tiết
TN
Xem chi tiết
CH
Xem chi tiết
NA
Xem chi tiết
CT
Xem chi tiết
VM
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết