NA

Cho tam giác ABC cân tại A, có góc A=100 độ. Hai điểm M và N lần lượt là trung điểm của AB và AC. Hai đường thẳng CM và BN cắt nhau tại G.

a) Chứng minh: GM=GN.

b) Trên tia đối của tia NB lấy điểm K sao cho NK=NG. Tính AK=GC và chứng minh KC vuông góc với BC.

c) Lấy Q trên BC sao cho QC=QA. Từ Q kẻ song song với AC cắt AB tại E. Tính các góc của tam giác  AQE.

d) Tính góc QCE.

NT
31 tháng 3 2021 lúc 23:03

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔANB và ΔAMC có

AN=AM(cmt)

\(\widehat{BAN}\) chung

AB=AC(ΔABC cân tại A)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)

hay \(\widehat{MBG}=\widehat{NCG}\)(3)

Xét ΔMBG có \(\widehat{MBG}+\widehat{MGB}+\widehat{BMG}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)

Xét ΔNCG có \(\widehat{NCG}+\widehat{NGC}+\widehat{GNC}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)

Từ (1), (2) và (3) suy ra \(\widehat{MGB}+\widehat{BMG}=\widehat{NGC}+\widehat{CNG}\)

mà \(\widehat{MGB}=\widehat{NGC}\)(hai góc đối đỉnh)

nên \(\widehat{BMG}=\widehat{CNG}\)

Xét ΔBMG và ΔCNG có 

\(\widehat{BMG}=\widehat{CNG}\)(cmt)

BM=CN(cmt)

\(\widehat{MBG}=\widehat{NCG}\)(cmt)

Do đó: ΔBMG=ΔCNG(g-c-g)

Suy ra: GM=GN(Hai cạnh tương ứng)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
DV
Xem chi tiết
LN
Xem chi tiết