Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

VT

Bài 1: Tìm x thuộc Z để biểu thức nguyên

a)P= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)(x lớn hơn hoặc = 0, x khác 1)

b)Q= \(\dfrac{\sqrt{a}+1}{\sqrt{a}+2}\)(a lớn hơn hoặc = 0, a khác 4)

c)A= \(\dfrac{\sqrt{a}-1}{\sqrt{a}-4}\)(a lớn hơn hoặc = 0, a khác 16)

PL
25 tháng 7 2018 lúc 8:57

\(a.P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Để : \(P\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\in Z\Leftrightarrow\left(\sqrt{x}+1\right)\in\left\{\pm1;\pm2\right\}\)

+) \(\sqrt{x}+1=1\Leftrightarrow x=0\left(TM\right)\)

+) \(\sqrt{x}+1=-1\Leftrightarrow vô-n^o\)

+) \(\sqrt{x}+1=2\Leftrightarrow x=1\left(KTM\right)\)

+) \(\sqrt{x}+1=-2\Leftrightarrow vô-n^o\)

KL.............

\(b.Q=\dfrac{\sqrt{a}+1}{\sqrt{a}+2}=\dfrac{\sqrt{a}+2-1}{\sqrt{a}+2}=1-\dfrac{1}{\sqrt{a}+2}\)

Để : \(Q\in Z\Leftrightarrow\dfrac{1}{\sqrt{a}+2}\in Z\Leftrightarrow\left(\sqrt{a}+2\right)\in\left\{\pm1\right\}\)

+) \(\sqrt{a}+2=1\Leftrightarrow vô-n^o\)

+) \(\sqrt{a}+2=-1\Leftrightarrow vô-n^o\)

KL............

\(c.A=\dfrac{\sqrt{a}-1}{\sqrt{a}-4}=\dfrac{\sqrt{a}-4+3}{\sqrt{a}-4}=1+\dfrac{3}{\sqrt{a}-4}\)

Để : \(A\in Z\Leftrightarrow\dfrac{3}{\sqrt{a}-4}\in Z\Leftrightarrow\left(\sqrt{a}-4\right)\in\left\{\pm1;\pm3\right\}\)

+) \(\sqrt{a}-4=1\Leftrightarrow a=25\left(TM\right)\)

+) \(\sqrt{a}-4=-1\Leftrightarrow a=9\left(TM\right)\)

+) \(\sqrt{a}-4=3\Leftrightarrow a=49\left(TM\right)\)

+) \(\sqrt{a}-4=-3\Leftrightarrow a=1\left(TM\right)\)

KL............

P/s : Mình thấy đề bài b sai nhé , mẫu phải là \(\sqrt{a}-2\) thì mới phù hợp ĐK đã cho .

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
MS
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
KS
Xem chi tiết
DT
Xem chi tiết
VL
Xem chi tiết
AP
Xem chi tiết
AP
Xem chi tiết