a) Ta có: x(x-1)<0
\(\Leftrightarrow\)x; x-1 khác dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}x>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 1\end{matrix}\right.\Leftrightarrow0< x< 1\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy: 0<x<1
b) Ta có: (2-x)(3x-12)>0
\(\Leftrightarrow\)2-x; 3x-12 cùng dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}2-x>0\\3x-12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\3x>12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>4\end{matrix}\right.\Leftrightarrow x>4\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}2-x< 0\\3x-12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\3x< 12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< 4\end{matrix}\right.\Leftrightarrow x< 2\)
Vậy: 2<x<4
c) Ta có: \(\left(x+1\right)^2\cdot\left(5-2x\right)\le0\)
*Trường hợp 1:
\(\left(x+1\right)^2\cdot\left(5-2x\right)< 0\)
\(\Leftrightarrow\)(x+1)2; 5-2x khác dấu
-Trường hợp 1:
\(\left\{{}\begin{matrix}\left(x+1\right)^2< 0\\5-2x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\2x< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< \frac{5}{2}\end{matrix}\right.\Leftrightarrow x< 1\)
-Trường hợp 2:
\(\left\{{}\begin{matrix}\left(x+1\right)^2>0\\5-2x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1>0\\2x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>\frac{5}{2}\end{matrix}\right.\Leftrightarrow x>\frac{5}{2}\)
Vậy: \(1< x< \frac{5}{2}\)
câu d tương tự nhé bạn
c , Ta có : \(\left(x+1\right)^2\left(5-2x\right)\le0\)
=> \(5-2x\le0\)
=> \(2x\ge5\)
=> \(x\ge\frac{5}{2}\)
Vậy phương trình có tập nghiệm là \(S=\left\{x|x\ge\frac{5}{2}\right\}\) .