Bài 1: hình chóp s.abcd có đáy hình vuông abcd tâm Ở cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA =a. Gọi I là trung điểm của cạnh SC và M là trung điểm của đoạn AB . a) tính k/c từ I đến mp (ABCD). B) tính k/c từ I đến CM
Bài 2 cho hình lập phương ABCD.A’B’C’D’ cạnh a. A) Tính : k/c từ A đến mp (A’BD),,, B) tính k/c từ A’, B,C,D’ đến đương thẳng AC’
1.
a/ I là trung điểm SC
\(\Rightarrow IC=\frac{1}{2}SC\Rightarrow d\left(I;\left(ABCD\right)\right)=\frac{1}{2}d\left(S;\left(ABCD\right)\right)=\frac{1}{2}SA=\frac{a}{2}\)
b/
Kẻ \(OH\perp CM\) (H thuộc CM) (1)
\(IO\) là đường trung bình tam giác SAC \(\Rightarrow\left\{{}\begin{matrix}IO=\frac{1}{2}SA=\frac{a}{2}\\IO//SA\end{matrix}\right.\)
\(\Rightarrow IO\perp\left(ABCD\right)\Rightarrow IO\perp CM\) (2)
(1); (2) \(\Rightarrow CM\perp\left(IOH\right)\Rightarrow CM\perp IH\)
\(\Rightarrow IH=d\left(I;CM\right)\)
Gọi N là trung điểm CD \(\Rightarrow OH=\frac{1}{2}.\frac{MN.CN}{\sqrt{MN^2+CN^2}}=\frac{a\sqrt{5}}{10}\)
\(\Rightarrow IH=\sqrt{IO^2+OH^2}=\frac{a\sqrt{30}}{10}\)
2.
a/ Gọi O là trung điểm BD \(\Rightarrow BD\perp\left(OAA'\right)\)
Trong tam giác OAA', từ A kẻ \(AH\perp OA'\Rightarrow AH\perp\left(A'BD\right)\Rightarrow AH=d\left(A;\left(A'BD\right)\right)\)
\(\frac{1}{AH^2}=\frac{1}{OA^2}+\frac{1}{A'A^2}=\frac{2}{a^2}+\frac{1}{a^2}=\frac{3}{a^2}\Rightarrow AH=\frac{a\sqrt{3}}{3}\)
b/
Trong tam giác vuông A'AC', kẻ \(A'K\perp AC'\Rightarrow A'K=d\left(A';AC'\right)\)
\(\frac{1}{A'K^2}=\frac{1}{A'A^2}+\frac{1}{A'C'^2}\Rightarrow A'K=...\)
\(A'D'//B'C'\Rightarrow A'D'//\left(AB'C'\right)\Rightarrow d\left(D';AC'\right)=d\left(A';AC'\right)=...\)
Trong tam giác vuông ABC', kẻ \(BP\perp AC'\)
Tương tự như trên:
\(d\left(B;AC'\right)=d\left(C;AC'\right)=BP=\frac{AB.C'B}{\sqrt{AB^2+C'B^2}}=...\)