Bài 5: Khoảng cách

MA

Cho hình chóp S.ABCD có tam giác SAB đều và nằm trong mặt phẳng vuông góc với (ABCD) , tứ giác ABCD là hình vuông cạnh a . Gọi H là trung điểm của AB . Tính khoảng cách từ điểm H đến mặt phẳng (SCD).  

NL
23 tháng 4 2022 lúc 9:54

Do SAB là tam giác đều \(\Rightarrow SH\perp AB\)

Mà \(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\AB=\left(SAB\right)\cap\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)

Gọi E là trung điểm CD, từ H kẻ \(HF\perp SE\) (F thuộc SE)

\(\left\{{}\begin{matrix}HE\perp CD\\SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SHE\right)\)

\(\Rightarrow CD\perp HF\)

\(\Rightarrow HF\perp\left(SCD\right)\Rightarrow HF=d\left(H;\left(SCD\right)\right)\)

\(HE=BC=a\) ; \(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

Hệ thức lượng: 

\(HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{21}}{7}\)

Bình luận (0)
NL
23 tháng 4 2022 lúc 9:54

undefined

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
DK
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết