Bài 4: Liên hệ giữa phép chia và phép khai phương

LN

bài 1 : giải pt

a,\(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\)

b, \(\dfrac{6}{x-4}=\sqrt{2}\)

c,\(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)

bài 2 : tính

a, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)

b,\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

c, \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

DT
29 tháng 9 2017 lúc 22:18

Bài 1:

a/ \(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\) .

\(\Leftrightarrow\dfrac{2\left(x^2-2x+1\right)}{6}=1\)

\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{3}=1\)

\(\Leftrightarrow\left(x-1\right)^2=3\) \(\Rightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+1\\x=-\sqrt{3}+1\end{matrix}\right.\)

vậy tập nghiệm của phương trình S=\(\left\{1-\sqrt{3};\sqrt{3}+1\right\}\)

b/ ta có: \(\dfrac{6}{x-4}=\sqrt{2}\Leftrightarrow\sqrt{2}\left(x-4\right)=6\)

\(\Leftrightarrow x\sqrt{2}-4\sqrt{2}=6\)

\(\Leftrightarrow x\sqrt{2}=6+4\sqrt{2}\)

\(\Leftrightarrow x=\dfrac{6+4\sqrt{2}}{2}=4+3\sqrt{2}\)

vậy \(x=4+3\sqrt{2}\) là nghiệm của phương trình

c/ \(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)

\(\Leftrightarrow\left(\sqrt{\dfrac{20}{2x^2-8x+8}}\right)^2=\left(\sqrt{5}\right)^2\)

\(\Leftrightarrow\dfrac{20}{2\left(x^2-4x+4\right)}=5\)

\(\Leftrightarrow\dfrac{10}{\left(x-2\right)^2}=\dfrac{10}{2}\)

\(\Rightarrow\left(x-2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\)

vậy tập nghiệm của phương trình \(S=\left\{2+\sqrt{2};2-\sqrt{2}\right\}\)

Bình luận (0)
DT
29 tháng 9 2017 lúc 22:54

Bài 2:

a/ đặt A= \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)

\(\Leftrightarrow A^2=3+\sqrt{5}+3-\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(\Leftrightarrow A^2=6-2\sqrt{9-5}\)

\(\Leftrightarrow A^2=6-2\sqrt{4}=6-4=2\)

\(\Rightarrow A=\sqrt{2}\)

\(\Rightarrow\)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\) = \(\sqrt{2}\)

\(\Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

b/ \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\dfrac{\sqrt{12}}{\sqrt{15}}+\dfrac{\sqrt{75}}{\sqrt{15}}+\dfrac{\sqrt{27}}{\sqrt{15}}=\sqrt{\dfrac{12}{15}}+\sqrt{\dfrac{75}{15}}+\sqrt{\dfrac{27}{15}}\)

\(=\dfrac{2\sqrt{5}}{5}+\sqrt{5}+\dfrac{3\sqrt{5}}{5}=\left(\dfrac{2\sqrt{5}}{5}+\dfrac{3\sqrt{5}}{5}\right)+\sqrt{5}\)

\(=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)

c/ \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(24\sqrt{5}-80\sqrt{2}+105\sqrt{2}\right):\sqrt{10}\)

\(=\left(24\sqrt{5}+25\sqrt{2}\right):\sqrt{10}=\dfrac{24\sqrt{5}}{\sqrt{10}}+\dfrac{25\sqrt{2}}{\sqrt{10}}\)

\(=12\sqrt{2}+5\sqrt{5}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TK
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết