Bài 1: Giải các phương trình tích sau:
2. a) (3x + 2)(x2 –1) = (9x2 – 4)(x + 1) b)x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c) 2x(x – 3) + 5(x – 3) = 0 d) (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
e) (x + 2)(3 – 4x) = x2 + 4x + 4 f) x(2x – 7) – 4x + 14 = 0
g) 3x – 15 = 2x(x – 5) h) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
i) 0,5x(x – 3) = (x – 3)(1,5x – 1) j) (2x2 + 1)(4x – 3) = (x – 12)(2x2 + 1)
k) x(2x – 9) = 3x(x – 5) l) (x – 1)(5x + 3) = (3x – 8)(x – 1)
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)
\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)
\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)
\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)
\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)
\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)