Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

NM

Bài 1: CM với mọi số nguyên dương n thì \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)

Bài 2: CM với mọi số tự nhiên n>=2 đều có \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+.....+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)

H24
24 tháng 5 2018 lúc 13:57

bai 1

(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)

1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]

A=..

n =1 yes

n>1

A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)

A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
Na
Xem chi tiết
Na
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết