QL

Bài 1. (4 điểm)

1) Cho biểu thức A=\frac{9}{x-\sqrt{x}-2}+\frac{2 \sqrt{x}+5}{\sqrt{x}+1}-\frac{\sqrt{x}-1}{\sqrt{x}-2} với x \geq 0 và x \neq 4

Tìm tất cả các giá trị nguyên của x sao cho biểu thức A nhận giá trị nguyên

2) Cho phương trình x^{2}-(2 m+3) x+m=0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt \mathrm{x}_{1}, \mathrm{x}_{2} sao cho x_{1}^{2}+x_{2}^{2}=9

NT
22 tháng 10 2023 lúc 21:37

1:

\(A=\dfrac{9}{x-\sqrt{x}-2}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

\(=\dfrac{9+\left(2\sqrt{x}+5\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{9+2x-4\sqrt{x}+5\sqrt{x}-10-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)

=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)

=>\(x\in\left\{9;1;16;0\right\}\)

2:

\(\text{Δ}=\left(-2m-3\right)^2-4m\)

\(=4m^2+12m+9-4m\)

\(=4m^2+5m+9\)

\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{56}{16}\)

\(=\left(2m+\dfrac{5}{4}\right)^2+\dfrac{56}{16}>=\dfrac{56}{16}>0\)

=>Phương trình luôn có hai nghiệm phân biệt

\(x_1^2+x_2^2=9\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=9\)

=>\(\left(2m+3\right)^2-2m=9\)

=>\(4m^2+12m+9-2m-9=0\)

=>4m^2+10m=0

=>2m(2m+5)=0

=>m=0 hoặc m=-5/2

Bình luận (1)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
PB
Xem chi tiết
HV
Xem chi tiết
LT
Xem chi tiết
NM
Xem chi tiết
NY
Xem chi tiết