Bài 3: Liên hệ giữa phép nhân và phép khai phương

PT

b2. So sánh

a) 7 + \(\sqrt{5}\) và 11 - \(\sqrt{2}\)

b) \(\sqrt{2005}\) + \(\sqrt{2007}\)\(2\sqrt{2006}\)

c) \(\sqrt{10}\) + \(\sqrt{13}\)\(2\sqrt{11}\)

d) \(\sqrt{5}+\sqrt{7}\)\(3+\sqrt{6}\)

H24
5 tháng 7 2019 lúc 17:26

so sánh: \(4-\sqrt{2}\)\(\sqrt{5}\)

\(\left(4-\sqrt{2}\right)^2=18-8\sqrt{2}>18-8\sqrt{2,25}=18-8.1,5=18-12=6>5=\sqrt{5}^2\Rightarrow4-\sqrt{2}>\sqrt{5}\left(vì:\left\{{}\begin{matrix}4-\sqrt{2}>0\\\sqrt{5}>0\end{matrix}\right.\right)\Rightarrow7+4-\sqrt{2}>7+\sqrt{5}\Rightarrow11-\sqrt{2}>7+\sqrt{5}\)

\(b,2006^2-2005.2007=2006^2-\left(2006-1\right)\left(2006+1\right)=2006^2-2006^2+1=1\Rightarrow2006^2>2005.2007\left(1\right)\)

\(\left(2\sqrt{2006}\right)^2=4.2006=8024;\left(\sqrt{2005}+\sqrt{2007}\right)^2=2005+2007+2\sqrt{2005.2007}=4012+2\sqrt{2005.2007}=4012+2\sqrt{2006.2006}\left(vì\left(1\right)\right)=8024=\left(2\sqrt{2006}\right)^2\)

\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\left(vì:\left\{{}\begin{matrix}\sqrt{2005}+\sqrt{2007}>0\\2\sqrt{2006}>0\end{matrix}\right.\right)\)

\(c,\left(\sqrt{10}+\sqrt{13}\right)^2=23+2\sqrt{130}>23+2\sqrt{121}\left(130>121\right)=23+2.11=45>4.11=\left(2\sqrt{11}\right)^2\Rightarrow\sqrt{10}+\sqrt{13}>2\sqrt{11}\left(vì\left\{{}\begin{matrix}\sqrt{10}+\sqrt{13}>0\\2\sqrt{11}>0\end{matrix}\right.\right)\)

\(d,\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}< 12+2\sqrt{36}=12+12=24< 15+6\sqrt{6}=\left(3+\sqrt{6}\right)^2\Rightarrow\sqrt{5}+\sqrt{7}< 3+\sqrt{6}\left(vì:\left\{{}\begin{matrix}\sqrt{5}+\sqrt{7}>0\\3+\sqrt{6}>0\end{matrix}\right.\right)\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
HA
Xem chi tiết
LM
Xem chi tiết
PH
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết
DT
Xem chi tiết