LT

B1: Tìm x
a) (x-3)^2+(4-x)(x+4)=10
b) x^2-2x=0
c) (x^2-9)^2-(x-3)^2=0

H24
26 tháng 12 2023 lúc 20:57

a) \(\left(x-3\right)^2+\left(4-x\right)\left(x+4\right)=10\)

\(\Leftrightarrow\left(x^2-2\cdot x\cdot3+3^2\right)+\left(4-x\right)\left(4+x\right)=10\)

\(\Leftrightarrow x^2-6x+9+\left(4^2-x^2\right)-10=0\)

\(\Leftrightarrow x^2-6x-1+16-x^2=0\)

\(\Leftrightarrow-6x+15=0\)

\(\Leftrightarrow6x=15\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

b) \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x^2-3^2\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x+3\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
48
Xem chi tiết
TK
Xem chi tiết
AH
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
QN
Xem chi tiết
TL
Xem chi tiết
1H
Xem chi tiết
KA
Xem chi tiết