TT

B= \(\dfrac{x-1}{x+1}\)\(\dfrac{x+1}{x-1}\)\(\dfrac{4}{1-x^2}\)

a. tìm điều kiện xác định và rút gọn B

b. Tính giá trị của B Khi x^2- x=0

c. tìm x để B = -3

d. Với giá trị nào của X thì b<0

NT
9 tháng 6 2023 lúc 19:26

\(a,\)

\(B=\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}-\dfrac{4}{1-x^2}\) (Điều kiện xác định: \(x\ne\pm1\))

\(=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{4}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^2-2x+1-\left(x^2+2x+1\right)+4}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{-4x+4}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=-\dfrac{4}{x+1}\)

\(b,\)

\(x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Với \(x=0\Rightarrow B=-\dfrac{4}{0+1}=-4\)

Với \(x=1\Rightarrow B=-\dfrac{4}{1+1}=-2\)

\(c,\)

\(B=-3\Rightarrow-\dfrac{4}{x+1}=-3\)

\(\Leftrightarrow-3\left(x+1\right)=-4\)

\(\Leftrightarrow-3x-3+4=0\)

\(\Leftrightarrow-3x+1=0\)

\(\Leftrightarrow-3x=-1\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

\(d,\)

\(B< 0\Rightarrow-\dfrac{4}{x+1}< 0\)

\(\Leftrightarrow x+1>0\)

\(\Leftrightarrow x>-1\)

Kết hợp điều kiện \(x\ne\pm1\) 

\(\Rightarrow-1< x< 1\)

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
HC
Xem chi tiết
KD
Xem chi tiết
LM
Xem chi tiết
MM
Xem chi tiết
NL
Xem chi tiết