(K đăng hình đc nên hình tự vẽ)
Kẻ \(AH\perp BC\left(H\in BC\right)\)
• Xét \(\Delta HAC\) vuông tại \(H\) có
\(\sin C=\dfrac{AH}{AC}\Rightarrow AH=\sin50^o.35\approx26,81\left(cm\right)\)
\(\cos C=\dfrac{HC}{AC}\Rightarrow HC=\cos50^o.35\approx22,5\left(cm\right)\)
• Xét \(\Delta HAB\) vuông tại \(H\) có
\(\tan B=\dfrac{AH}{BH}\Rightarrow BH\approx\dfrac{26,81}{\tan60^o}\approx15,48\left(cm\right)\)
\(\cos B=\dfrac{AH}{AB}\Rightarrow AB\approx\dfrac{26,81}{\cos60^o}\approx53,62\left(cm\right)\)
*Khi đó chu vi \(\Delta ABC\) bằng \(AB+BC+AC\)
\(\approx53,62+\left(22,5+15,48\right)+35\)
\(\approx192,48\left(cm\right)\)
*Khi đó \(S_{\Delta ABC}=\dfrac{AH.BC}{2}\approx\dfrac{26,81.\left(22,5+15,48\right)}{2}\approx509,12\left(cm^2\right)\)
#F.C